Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163237

RESUMO

Membrane fouling by monoclonal antibodies (mAbs) is one of the main challenges in virus-filtration processes. Previous publications attributed membrane fouling to the presence of mAb aggregates in the solution, which block the membrane pores. This fouling mechanism can be solved by a prefilter; however, it was shown that there are mAbs that severely foul the membranes (reduce permeability by 90% and more) even after prefiltering the aggregates, while other mAbs foul the membrane weakly (reduce permeability by ~10% and less). Unfortunately, the differences between the fouling- and the nonfouling mAbs have never been convincingly explained. To get a deeper insight on these differences, we measured the fouling of chemically modified Isoprene-Styrene-4-vinylpyridine (ISV) membranes (TeraPore Technologies) by 8 mAbs exhibiting different hydrophobicity and charge. The results show that mAb solutions with low concentration of aggregates foul ISV membranes via an adsorptive mechanism, and the adsorption is driven mainly by hydrophobic forces between the mAb and the membrane. The charge of the mAbs plays a secondary role in fouling. We want to emphasize that the conclusions pertain to ISV membranes; the insights presented in this paper can potentially be used to engineer new surface chemistries to mitigate fouling of other virus-filtration and/or ultrafiltration membranes.

2.
Nano Lett ; 7(1): 179-82, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17212460

RESUMO

In this paper, we report the development of rod-shaped semiconductor nanocrystals (quantum rods) as fluorescent biological labels. Water-soluble biocompatible quantum rods have been prepared by surface silanization and applied for nonspecific cell tracking as well as specific cellular targeting. Quantum rods are brighter single molecule probes as compared to quantum dots. They have many potential applications as biological labels in situations where their properties offer advantages over quantum dots.


Assuntos
Corantes Fluorescentes , Teoria Quântica , Semicondutores
3.
Nano Lett ; 6(4): 800-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16608287

RESUMO

Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant change in expression level of greater than 2-fold. Genes activated in treated cells included those involved in carbohydrate binding, intracellular vesicle formation, and cellular response to stress. Conversely, PEG-silane-Qdots induce a down-regulation of genes involved in controlling the M-phase progression of mitosis, spindle formation, and cytokinesis. Promoter analysis of these results reveals that expression changes may be attributed to the down-regulation of FOXM and BHLB2 transcription factors. Remarkably, PEG-silane-Qdots, unlike carbon nanotubes, do not activate genes indicative of a strong immune and inflammatory response or heavy-metal-related toxicity. The experimental evidence shows that CdSe/ZnS Qdots, if appropriately protected, induce negligible toxicity to the model cell system studied here, even when exposed to high dosages. This study indicates that PEG-coated silanized Qdots pose minimal impact to cells and are a very promising alternative to uncoated Qdots.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteoma/metabolismo , Pontos Quânticos , Dióxido de Silício/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos
4.
J Phys Chem B ; 110(11): 5779-89, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539525

RESUMO

Quantum dots (QDs) have been increasingly used in biolabeling recently as their advantages over molecular fluorophores have become clear. For bioapplications QDs must be water-soluble and buffer stable, making their synthesis challenging and time-consuming. A simple aqueous synthesis of silica-capped, highly fluorescent CdTe quantum dots has been developed. CdTe QDs are advantageous as the emission can be tuned to the near-infrared where tissue absorption is at a minimum, while the silica shell can prevent the leakage of toxic Cd(2+) and provide a surface for easy conjugation to biomolecules such as proteins. The presence of a silica shell of 2-5 nm in thickness has been confirmed by transmission electron microscopy and atomic force microscopy measurements. Photoluminescence studies show that the silica shell results in greatly increased photostability in Tris-borate-ethylenediaminetetraacetate and phosphate-buffered saline buffers. To further improve their biocompatibility, the silica-capped QDs have been functionalized with poly(ethylene glycol) and thiol-terminated biolinkers. Through the use of these linkers, antibody proteins were successfully conjugated as confirmed by agarose gel electrophoresis. Streptavidin-maleimide and biotinylated polystyrene microbeads confirmed the bioactivity and conjugation specificity of the thiolated QDs. These functionalized, silica-capped QDs are ideal labels, easily synthesized, robust, safe, and readily conjugated to biomolecules while maintaining bioactivity. They are potentially useful for a number of applications in biolabeling and imaging.


Assuntos
Compostos de Cádmio/química , Imunoglobulina G/química , Nanotecnologia/métodos , Pontos Quânticos , Dióxido de Silício/química , Compostos de Sulfidrila/química , Telúrio/química , Biotinilação , Ácidos Bóricos/química , Compostos de Cádmio/síntese química , Ácido Edético/química , Eletroforese em Gel de Ágar , Imunoglobulina G/metabolismo , Maleimidas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Poliestirenos/química , Cloreto de Sódio/química , Solubilidade , Estreptavidina/química , Propriedades de Superfície , Trometamina/química , Água/química
6.
Sci STKE ; 2005(290): pl5, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15985641

RESUMO

Because of their favorable physical and photochemical properties, colloidal CdSe/ZnS-semiconductor nanocrystals (commonly known as quantum dots) have enormous potential for use in biological imaging. In this report, we present an assay that uses quantum dots as markers to quantify cell motility. Cells that are seeded onto a homogeneous layer of quantum dots engulf and absorb the nanocrystals and, as a consequence, leave behind a fluorescence-free trail. By subsequently determining the ratio of cell area to fluorescence-free track area, we show that it is possible to differentiate between invasive and noninvasive cancer cells. Because this assay uses simple fluorescence detection, requires no significant data processing, and can be used in live-cell studies, it has the potential to be a powerful new tool for discriminating between invasive and noninvasive cancer cell lines or for studying cell signaling events involved in migration.


Assuntos
Movimento Celular , Invasividade Neoplásica , Pontos Quânticos , Semicondutores , Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Compostos de Cádmio , Contaminação de Equipamentos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Fagocitose , Compostos de Selênio , Sulfetos , Células Tumorais Cultivadas/fisiologia , Compostos de Zinco
7.
Talanta ; 67(3): 472-8, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970191

RESUMO

CdSe nanocrystals, also called quantum dots (Qdots) are a novel class of fluorophores, which have a diameter of a few nanometers and possess high quantum yield, tunable emission wavelength and photostability. They are an attractive alternative to conventional fluorescent dyes. Quantum dots can be silanized to be soluble in aqueous solution under biological conditions, and thus be used in bio-detection. In this study, we established a novel Qdot-based technology platform that can perform accurate and reproducible quantification of protein concentration in a crude cell lysate background. Protein lysates have been spiked with a target protein, and a dilution series of the cell lysate with a dynamic range of three orders of magnitude has been used for this proof-of-concept study. The dilution series has been spotted in microarray format, and protein detection has been achieved with a sensitivity that is at least comparable to standard commercial assays, which are based on horseradish peroxidase (HRP)-catalyzed diaminobenzidine (DAB) chromogenesis. The data obtained through the Qdot method has shown a close linear correlation between relative fluorescence unit and relative protein concentration. The Qdot results are in almost complete agreement with data we obtained with the well-established HRP-DAB colorimetric array (R(2)=0.986). This suggests that Qdots can be used for protein quantification in microarray format, using the platform presented here.

8.
Differentiation ; 71(9-10): 542-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14686951

RESUMO

Motility and migration are measurable characteristics of cells that are classically associated with the invasive potential of cancer cells, but in vitro assays of invasiveness have been less than perfect. We previously developed an assay to monitor cell motility and migration using water-soluble CdSe/ZnS nanocrystals; cells engulf the fluorescent nanocrystals as they crawl across them and leave behind a fluorescent-free trail. We show here that semiconductor nanocrystals can also be used as a sensitive two-dimensional in vitro invasion assay. We used this assay to compare the behavior of seven different adherent human cell lines, including breast epithelial MCF 10A, breast tumor MDA-MB-231, MDA-MB-435S, MCF 7, colon tumor SW480, lung tumor NCI H1299, and bone tumor Saos-2, and observed two distinct behaviors of cancer cells that can be used to further categorize these cells. Some cancer cell lines demonstrate fibroblastic behaviors and leave long fluorescent-free trails as they migrate across the dish, whereas other cancer cells leave clear zones of varying sizes around their periphery. This assay uses fluorescence detection, requires no processing, and can be used in live cell studies. These features contribute to the increased sensitivity of this assay and make it a powerful new tool for discriminating between non-invasive and invasive cancer cell lines.


Assuntos
Testes de Carcinogenicidade/métodos , Movimento Celular , Neoplasias/patologia , Interpretação Estatística de Dados , Humanos , Nanotecnologia/métodos , Invasividade Neoplásica , Semicondutores , Sensibilidade e Especificidade , Células Tumorais Cultivadas
9.
Anal Chem ; 75(18): 4766-72, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-14674452

RESUMO

We report two cDNA microarray-based applications of DNA-nanocrystal conjugates, single-nucleotide polymorphism (SNP) and multiallele detections, using a commercial scanner and two sets of nanocrystals with orthogonal emissions. We focus on SNP mutation detection in the human p53 tumor suppressor gene, which has been found to be mutated in more than 50% of the known human cancers. DNA-nanocrystal conjugates are able to detect both SNP and single-base deletion at room temperature within minutes, with true-to-false signal ratios above 10. We also demonstrate microarray-based multiallele detection, using hybridization of multicolor nanocrystals conjugated to two sequences specific for the hepatitis B and hepatitis C virus, two common viral pathogens that inflict more than 10% of the population in the developing countries worldwide. The simultaneous detection of multiple genetic markers with microarrays and DNA-nanocrystal conjugates has no precedent and suggests the possibility of detecting an even greater number of bacterial or viral pathogens simultaneously.


Assuntos
Alelos , DNA/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Cristalização , Hibridização de Ácido Nucleico , Sensibilidade e Especificidade , Espectrometria de Fluorescência
10.
J Am Chem Soc ; 124(24): 7070-4, 2002 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12059231

RESUMO

Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle by using hybridization on a defined micrometer-size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals toward specific biological targets and detecting them, combined with their superior photostability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.


Assuntos
DNA/química , Corantes Fluorescentes/química , Semicondutores , DNA/genética , Ouro/química , Nanotecnologia/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...